Braided enveloping algebras associated to quantum parabolic subalgebras

نویسنده

  • Jan E. Grabowski
چکیده

Associated to every subset J of nodes of a Dynkin diagram is a standard parabolic subalgebra pJ of the corresponding Lie algebra g, generated by the positive Borel subalgebra of g together with the negative simple generators fj, j ∈ J . Furthermore one has a decomposition of g as a semi-direct product of pJ and the subalgebra n − J generated by the remaining negative simple generators. In the same way, for each J one can construct a quantum parabolic subalgebra of the quantized enveloping algebra Uq(g). In this paper, we show that the quantum analogue of n−J is a graded braided Hopf algebra B in the category of Uq(gJ )-modules, where gJ is the Lie algebra generated by the ej and fj with j ∈ J . We show that Uq(g) has a semi-direct product decomposition into the three subalgebras B, Uq(gJ ) and B ∗ (the graded dual of B), generalising the usual triangular decomposition into negative, Cartan and positive parts. We examine in detail the structure of B, ultimately showing that it is a Nichols algebra. In particular, B is generated in degree one and is completely determined by its associated braiding. Furthermore, we conjecture that the Nichols algebra associated to the q → 1 limit of this braiding is isomorphic to U(n−J ) and hence B is indeed a quantization of this.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum and Braided Lie Algebras

We introduce the notion of a braided Lie algebra consisting of a finite-dimensional vector space L equipped with a bracket [ , ] : L⊗L → L and a Yang-Baxter operator Ψ : L⊗L → L⊗L obeying some axioms. We show that such an object has an enveloping braided-bialgebra U(L). We show that every generic R-matrix leads to such a braided Lie algebra with [ , ] given by structure constants cK determined ...

متن کامل

Coideal Subalgebras and Quantum Symmetric Pairs

Coideal subalgebras of the quantized enveloping algebra are surveyed, with selected proofs included. The first half of the paper studies generators, Harish-Chandra modules, and associated quantum homogeneous spaces. The second half discusses various well known quantum coideal subalgebras and the implications of the abstract theory on these examples. The focus is on the locally finite part of th...

متن کامل

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras

Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras. Abstract We show that if g Γ is the quantum tangent space (or quantum Lie algebra in the sense of Woronowicz) of a bicovariant first order differential calculus over a co-quasitriangular Hopf algebra (A, r), then a certain extension of it is a braided Lie algebra in the category of A-comodules. This...

متن کامل

Pbw Deformations of Braided Symmetric Algebras and a Milnor-moore Type Theorem for Braided Bialgebras

Braided bialgebras were defined by mimicking the definition of bialgebras in a braided category; see [Ta]. In this paper we are interested in those braided bialgebras that are connected as a coalgebra, and such that, up to multiplication by a certain scalar, their braiding restricted to the primitive part is a Hecke operator. To every braided bialgebra as above we associate a braided Lie algebr...

متن کامل

Braided m-Lie Algebras

Braided m-Lie algebras induced by multiplication are introduced, which generalize Lie algebras, Lie color algebras and quantum Lie algebras. The necessary and sufficient conditions for the braided m-Lie algebras to be strict Jacobi braided Lie algebras are given. Two classes of braided m-Lie algebras are given, which are generalized matrix braided m-Lie algebras and braided m-Lie subalgebras of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008